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CONVECTION 

A b s t r a c t - T h e  Karhunen-Loeve decomposition is used to obtain a low dimensional model describing the dynamics 
of turbulent thermal convection in a finite box. The Karhunen-Loeve decomposition is a procedure for decomposing 
a stochastic field in an optimal way such that the stochastic field can be represented with a minimum number of 
degree of freedom. Numerical data for the turbulent thermal convection, generated by a pseudo-spectral method 
for the case of Pr=0.72 and aspect ratio=2, are prozessed by means of Karhunen-Loeve decomposition to yield 
a set of empirical eigenfunctions. A Galerkin procedure employing this set of empirical eigenfunctions reduces the 
Boussinesq equation to a small number of ordinary differential equations. This low dimensional model obtained from 
numerical data at the reference Rayleigh number of 70 times the critical Rayleigh number is found to predict turbulent 
conw~ction reasonably well over a range of Rayleigh numbers around the reference value. 

Key words: Turbulence, Thermal Convection, Karhunen-Loeve Decompositwn, Direct Spectral Simulation, Low Dimen- 
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INTRODUCTION 

Although the Rayleigh-Benard convection in turbulent state has 
been subject to a long history of experimental work [Silvestone, 
1958], its numerical simulation is rather new. It is only recent 
years when large scale computer simulations have been perform- 
ed for Rayleigh-Benard convection well into the chaotic or tur- 
bulent regime [-Gr6tzbach, 1983; Herring and Wyngaard, 1986; 
Kessler, 1987; McLaughlin and Orszag, 1982]. In some sense one 
might consider numerical simulations as a new experimental tool, 
but one in which one has much more control over the e• 
tal conditions than in the laboratory experiment, and one in which 
more detailed results may be obtained than in the laboratory. 
Also, in numerical simulation one can obtain informalion about 
quantities that are difficult or impossible to measure in the labo- 
ratory. In this approach, we resolve numerically all small scale 
motions of turbulence, which is inherently three-dimensional and 
unsteady, without introducing any turbulence models such as k- 
epsilon models, etc. This approach, called direct numerical simu- 
lation, demands tremendous amount of computer time and com- 
puter memory since we need a very- large number of grids to 
resolve all small scale motions, and as a result produces a vast 
amount of numerical data or informations. We encounter the same 
situation in laboratory experiments if all details of turbulence are 
measured. Therefore, the analysis and the assessment of huge 
data sets are nowadays one of the central problems confronting 
turbulence research. The number  of scales of motion activated 
in turbulence has a close relationship with the degree of freedom 
or the dimension of the underlying turbulence dynamics. For a 
clear understanding as well as practical applicability of the dynam- 
ic models of turbulence, it is essential for these dynamic models 

to be low dimensional. 
In many physical systems described by nonlinear partial differ- 

ential equations including the turbulent Rayleigh-Benard convec- 
tion under consideration in the present paper, the representation- 
al space is very" large or infinite. As an example, we recall Landau' 

s estimate on the degrees of freedom present in a given flow. 
Using the Kolmogorov scale as an estimate of the smallest rele- 
vant scale he arrived at (Re[Re~.) 9'4 degree of freedom, where Rec 
is the critical Reynolds number. By making use of Stoke's eigen- 
functions, Constantine et al. [1985] obtained a similar estimate 
with the use of a rigorous mathematical analysis. But based on 
many previous numerical and experimental evidence [Brown and 
Roshko, 1974] we conjecture that a description involving a much 
smaller space is possible. One clear and systematic way of demon- 
strating this conjecture is to employ the Karhunen-Loeve decom- 
position (K-L decomposition), a brief description of which is given 
in Sec. 2. 

The Karhunen-Loeve decomposition is first suggested by Lum- 
ley [1967] and Sirovich [1987a, 1987b] as a rational procedure 
for the extraction of characteristic structures of turbulent flow 
fields. Those characteristic structures are called empirical eigen- 
functions. As originally presented by Lumley, the method be- 
comes impractical unless all but one of the directions have period- 
ic boundary conditions. Due to this limitation, most of applications 
of the Karhunen-Loeve decomposition to turbulence have been 
confined to systems with periodic conditions. Perhaps one dis- 
tinguished exception is the turbulent Rayleigh-Benard in a confin- 
ed domain considered by Park and Sirovich [1990] and Sirovich 
and Park [19901] where no periodicity of boundary conditions 
is imposed. For a confined domain, the empirical eigenfunctions 
appear as complicated functions not expressible analytically, which 
are in contrast with those of infinite domains with periodic hound- 
aries whose empirical eigenfunctions are sinusoidal in the pe- 
riodic directions. In this fully confined turbulent R-B convection 
problem, the difficulty in the original form of the Karhunen-Loeve 
decomposition has been overcome by using the method of snap- 
shot or Schmidt-Hilbert technique. In this way, the applicability 
of the K-L decomposition has been extended to a more practical 

situation. 
When the K-L decomposition is applied to the turbulent Ray- 

leigb-Benard convection in a c nfined domain, as explained in 
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Fig. 1. Flow geometry. 

our previous work [-Park and Sirovich, 1990; Sirovich and Park, 
1990], the low dimensionality of the underlying dynamics of tur- 
bulence is clearly exhibited by the rapid convergence of the K- 
L procedure, i.e., most of the turbulence energy is captured with 
only a small number  of empirical eigenfunctions. The empirical 
eigenfunctions generated in the Karhunen-Loeve procedure can 
be used very efficiently in a Galerkin procedure to generate a 
low dimensional dynamic system [-Aubry et al., 1988; Sirovich, 

1987b]. 
In the present work we use the empirical eigenfunctions of 

the Rayleigh-Benard convection in a finite domain to approximate 
the dynamic behavior of the corresponding system. As is demon- 
strated in the previous work on the Ginzburg-Landau equation 
[-Sirovich and Rodriguez, 1987], the eigenfunctions generated for 

a fixed control parameter can be used to describe the dynamics 
of the system at other parameter values as long as these values 
are not much larger than the original one. Usually in turbulent 
flow, as the Reynolds number  (Rayleigh number  R in the case 
of thermal convection) increases, more and more small scale mo- 
tions (eddies) appear. But the large scale motions, lot example 
coherent structures, take care of most of the turbulent energy 
and have a dominant role in de 'ermining the trans[er rates of 
momentum, heat and mass, that may be one of the most important 
aspects of turbulence in engineering applications. As will be dem- 
onstrated in the sequel, the Karhunen-Loeve decomposition yields 
empirical eigenfunctions in the order of the size of the scales 
of flow and suggests a very convenient tool of obtaining a low 
dimensional model for turbulent dynamics. It shall be demonstra- 
ted that this low dimensional model can be used to predict pheno- 
mena of large scale motions of turbulence, such as Nusselt num- 

ber, over a range of Rayleigh numbers. 

GOVERNING EQUATIONS AND THE K A R H U N E N -  
LOEVE D E C O M P O S I T I O N  

The physical system of our specific interest in the present work 
is the Rayleigb-.Benard convection in a finite domain as sketched 
in Fig. 1. The Boussinesq equation and boundary conditions for 
this investigation are to be found in Sirovich and Park F1990] 
and are repeated here in the following form. 

V- u = 0 (1) 

( 0 - - U - u A c o = - V  p + ~ -  + R  Pr T e , + P r  V2u (2) 
at 

a T  + u" VT = w + V2T (3) 
at 

where r is vorticity and (u, v, w) the components of the velocity 
vector u, R the Rayleigh number, Pr the Prandtl number, and 
T is the deviation temperature given by the difference between 
the system temperature Ttot~ and the basic conduction profile, 

To + (T~ - T0)z/H, thus Tto,al=- T + To + (Tt - T0)z/H. Here, To is the 
bottom temperature, T~ is the top temperature and H is the sys- 
tem height. The relevant boundary conditions are as follows. 

w = T = 0 U = 0 V = 0  at z 0, 1 (4) 
0z Oz 

0 T _  0v u _ 0w _ 0 at x = 0, 2 (5) 
0x 0x 0x 

v = 0 T - T  0 u _ 0 w _ 0  at y=0 ,  2 (6) 
0Y 0Y 0Y 

These boundary conditions specify slip momentum boundary con- 
ditions at all boundaries, adiabatic sidewalls and specified temper- 
atures at the upper and lower boundaries. These boundary condi- 
tions may correspond to situations similar to free shear layers, 
which is more difficult to be realized experimentally than the 
usual non-slip boundaries. But this shear-free boundary conditions 
greatly reduce the computation cost because we can employ Fou- 
rier expansion instead of Chebyshev expansion in the spectral 
simulation. The aspect ratio of 2 includes the most dangerous 
mode from linear stability theory ESirovich and Park, 1990]. The 
Rayleigh number  is 70 times the critical value and Pr equals 0.72. 
The critical Rayleigh number  for this case is 657.5. The Pr value 

adopted here is that of air which is one of the most common 
fluids available. In Rayleigh-Benard convection, the Prandtl num- 
ber has non-negligible effect on instability or transition, where 
the Rayleigh number  is around the critical value. But when the 
Rayleigh number  exceeds far more than the critical value, as is 
in the present work, the effect of Prandt[ number  on the Rayleigh- 
Benard convection, especially on Nusselt number, is negligible. 
This is well demonstrated by the classical experiment of Silveston 
[-19581, who used various fluids having widely different values 
of Pr and measured Nusselt number  as a function of Rayleigh 
number. His result, that is also cited as Fig. 13 in Chandrasekhar 
E1961], reveals that the Nusselt number  does not depend appre- 
ciably on Prandtl number  in turbulent thermal convection. But 
it may be interesting to investigate the effect of Pr on turbulent 
thermal convection in detail in the future. 

The numerical procedure is as follows. We generate snapshots 
of the flow field by solving Eqs. (1)-(6) with a pseudospectral 
method. Algebraic products are calculated in the physical space 
and derivatives in the Fourier space, and the fast Fourier trans- 
form allows rapid passage between the spaces. This follows stand- 
ard practice [Canuto et aL, 1988]. A time marching scheme based 
on a leap-frog for nonlinear terms and an exact integration for 
the linear part is employed, which is stabilized by a periodic use 
of a second order Runge-Kutta scheme. The time step of integra- 
tion is taken to be less than the Kolmogorov time scale (A t=  
0.001) and the number  of grid points is large enough to resolve 
the Kolmogorov microscale (17 :~ grids). The velocity and temper- 
ature fields are dumped at every" 600 time steps to generate 200 
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Fig. 2a. The variation of velocity energy captured versus the number 
of velocity empirical eigenfunctions. 
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Fig. 2b. The variations of temperature energy captured versus the num- 
ber of temperature empirical eigenfuncfions. 

snapshots which are used as a data set for the subsequent Karhu- 
nen-Loeve decomposition. In Park and Sirovich [1990] we report- 
ed the detail of numerical method and the empirical eigenfunc- 
tions obtained by the snapshot method. Here a slightly different 
set of eigenfunctions is obtained, which is more convenient as 
a set of basis functions for the Galerkin approximation. The dif- 
ference is that now we separate the velocity and temperature 
fields when constructing the kernel of the Karhunen-Loeve inte- 
gral equation. 

We take the state variables to be 

u=(v l ,  v~, v3) (7) 

where v .  v~ and v:~ are the velocity components in the Cartesian 
coordinates, and imagine an ensemble of states (snapshots) of 
the flow on the attractor, denoted by 

u ("~= u(x, t.) (8) 

and sampled at uncorrelated times t~. The eigenfunction of the 
following integral equation with the largest eigenvalue k has the 
interpretation of being the most likely state of the flow field. 

f K(x, x ' )0(x ' )dx '=k0(x)  (9) 

where 

1 N 
[ K],~ = K,j(x, x ')= <v,(x)x~(x')) ~ N  .El vy(x)v'(")(X') (10) 

is the two point correlation function. The eigenfunction 0 with 
the next largest eigenvalue is the next likely state and so forth. 
This set of empirical eigenfunctions 10it satisfy orthogonality, 

(0. 0 ~ ) : f n 0 # ~  d x : 0 ,  jg-k (11) 

and are solenoida:[, V.0,=0. Similarly the integral equation yield- 
ing empirical eigenfunctions for the temperature field is given 
by 

fK(x, x')~t(x')dx' k~t(x) (12) 

where 

\ .~.......~...~.j~..~....v.....~...~... ~......~.. ~ ~ ... 

(a) 

-.. \ \ 

T r . . . . .  , . . . . .  ~ I 1 

\ \ 
/ / 1 

(b) 
Fig. 3a, b. The cross sectional views of the dominant velocity eigen- 

function. Inserts indicate planes in which flow lines are 

shown. 

] N 
K(x, x') = <T(x)'r(x')> ~- ~,~ fi~ T.)(x)T(,,(x,) (13) 

and the set {~jt is orthogonaL Figs. 2a and 2b plot the variation 
of energy capture versus the number of velocity and temperature 
eigenfunctions. Thus, with 50 eigenfunctions 95% of flow energy 
and 97% of temperature energy are captured. Figs. 3 and 4 show 
the dominant velocity and temperature eigenfunctions (i.e., eigen- 
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functions with large eigenvalues). They depict large scale, ener- 
getic motions of turbulent flow field. These dominant eigenfunc- 
tions are characterized by relatively well-organized large scale 
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Fig. 6. Energy spectrum of the first (solid line --), the 10th (dotted 
line ...), and the 50th (dashed line ---) velocity empirical eigen- 
functions. 

motions. By contrast eigenfunctions of high index as typified in 
Fig. 5, reveal irregular chaotic motion of much smaller length 
scale. This shows that through the K-L decomposition, large 
scale motions are depicted by dominant eigenfunctions and small 
scale motions which correspond to high frequency part of flow 
field are captured by eigenfunctions with smaller eigenvalues. Fig. 
6 shows the energy spectra of the first, the 10th and the 50tb 
velocity eigenfunction respectively. These energy spectra show 
that the empirical eigenfunctions are not monochromatic in spec- 
tral space but have broad band structures with maxima appearing 
at certain frequencies which represent the dominant scales for 
the corresponding eigenfunctions. The dominant eigenfunctions, 
such as the first one, have peaks at spatial frequencies which 
characterize their specific shapes. As the eigenvalue decreases 
the spatial frequency which yields maximum energy spectrum 
increases and the spectrum becomes more broad banded (in the 
sense that the standard deviation becomes larger). This is an indi- 
cation of the existence of many small scale motions of different 
sizes. 

The above trend suggests that the eigenfunctions with small 
eigenvalues act as eddy viscosity in the dynamics of large scale 
motion depicted by eigenfunctions with large eigenvalues. When 
we employ these empirical eigenfunctions as basis functions for 
the Galerkin procedure, as described in the next section, only 
a finite number of them are used and the remaining empirical 
eigenfunctions of high index (with smaller eigenvalues) are trun- 
cated. The resulting low dimensional dynamic system from this 
Galerkin procedure may be deficient in effective viscosity, espe- 

cially when the control parameters, like the Rayleigh number, 
exceed the value at which the empirical eigen:functions have been 
obtained. This fact will be explained further in the subsequent 
sections. 

T H E  GALERKIN P R O C E D U R E  

Next we project the Boussinesq equation into a finite dimen- 
sional space by means of a Galerkin procedure. Exploiting the 
fact that the Karhunen-Loeve decomposition produces a set of 
eigenfunctions in the order of their importance in describing the 
chaotic turbulent flow field, we first write, 
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u=  = Z a.(t)*.(x) 
n = l  

(1411 

MT 

T =  E b.(t)v.(x) (15) 
n 1 

where MM is the number of velocity eigenfunctions and MT that 
of temperature eigenfunctions employed in the Galerkin proce- 
dure. It may be convenient to take MM and MT to be the same 
number, but it does not always have to be so. As before {~./ is 
the set of velocity eigenfunctions and {~,,} the set of temperature 
eigenfunctions presented in the order of magnitude of eigenval- 
ues. These expansions (14) and (15) satisfy the boundary condi- 
tions (4)-(6) automatically since each of the empirical eigenfunc- 
tions ~. and q. satisfies all the boundary conditions (4)-(6). 

On substituting these Eqs. (14) and (15) into the set of Boussi- 
nesq Eqs. (1)-(3) and requiring the residuals be orthogonal to 
each of the basis functions used in the expansion, we find the 
following coupled set of ordinary differential equations in eigen- 
function space. 

da(~) MM MM MM 

S ~ - =  Z Z ama(~Qkl~+Pr E a(Z~A~,~ 
1=1 m = l  l=1 

MT 

+RPr  Z b(zlCk,~, k=I, . . . ,MM (16) 
t - 1  

db(k~ M.U ,~n .~4T 
- a~l)b~'~)~lm + Z br Pk dt z~:l ..E-1 ,:1 

MM 

+ Z a~OD~.t, k=I , . . . ,MT (17) 
/ - I  

where 

S,-:fa~k'~kdx (18) 

Pk =- fowwdx (19) 

Q k,..------fn~k" {*,/\(VA~O,.)}dx (20) 

R~z.-= fnW{V. ('*~w)}dx (21) 

A~.I-= fn~k" Vz~t,::lx (22) 

B~.,~- f n w v ~ , d  x (23) 

C,=- f Jv,dx (24) 

D,,=-f,y~0,"dx (25) 
In the above equations, 0~" is the z-component of the velocity 
eigenfunction ~ .  

The resulting sets of ordinary differential Eqs. (16) and (17) 
constitute the low dimensional model for turbulent thermal con- 
vection in the finite domain considered in the present work. This 
low dimensional model may be thought to be based on the follow- 
ing picture of turbulence. Namely, we imagine a chaotic and com- 
plicated turbulent flow field is composed of empirical eigenfunc- 
tions. 

u(x. t)= ~: a.(t)O.(x) (26) 
n = l  

where the time dependent coefficients a,(t)'s are given by 
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Fig. 7. Time series of the area averaged Nusselt number for R=70Rc 
from the low dimensional dynamic system. 

f 
a,(t) = Jn  u.c~.dx (27) 

The interpretation of Eqs. (26) and (27) is that the "unsteady" 
complicated turbulent flow field is modeled to be composed of 
sum of "steady" deterministic empirical eigenfunctions, and the 
unsteadiness of turbulence comes from the time dependence of 
the coefficients a.'s that premultiply each eigenfunction. The re- 
sulting low dimensional Eqs. (16) and (17) are solved by a fourth- 
order Runge-Kutta method. 

RESULTS AND DISCUSSION 

In this section we shall investigate how well the low dimension- 
al system of the present work reproduces the results of the origi- 
nal dynamics, i.e. the Boussinesq set of Eqs. (1)-(3). For this pur- 
pose we set, as a reference value, MM = 100 and MT= 100, where 
MM is the number of velocity eigenfunctions and MT that of 
temperature eigenfunctions respectively. This set of 200 ordinary 
differential equations is integrated for 20 physical seconds to ge- 
nerate a time series of area-averaged Nusselt number and aver- 
aged profiles for (T)~ where ( ')A means horizontal area average. 
Since the system temperature is given as Ttot.j = T +  To+ (T1-To) 
z/H, the Nusselt number is defined by Nu= 1-(oT/oZ)/(To-T1 
/H). The integration time of 20 physical seconds is sufficiently 
long to get stationary turbulence statistics. In the following, the 
Prandtl number is fixed to be 0.72 for all results. Fig. 7 shows 
the time series of the unsteady area-averaged Nussett number, 
i.e. (Nu)A, for R=70Rc when the reference Rayleigh number, 
on which the original empirical eigenfunctions are based, is the 
same 701L. Here R~. is the critical Rayleigh number based on 
a linear stability analysis I-Sirovich and Park, 1990]. The time 
averaged Nusselt number from this low dimensional model is 
6.05 which is 5% higher than the exact value of 5.75 [-Park and 
Sirovich, 1990]. Considering the fact that 98% of the velocity en- 
ergy and 99% of the temperature energy are captured with 100 
empirical eigenfunctions (cf. Fig. 2a, b) and the Nusselt number 
is determined by a temperature gradient which is not so easily 
captured as the temperature itself through the empirical eigen- 
functions, this accuracy of prediction is more than what we can 
expect. The horizontal area averaged temperature profile (T)A 
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Fig. 8. Horizontal area averaged temperature profile <T>A obtained 
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ison with that from the direct spectral simulation (dashed line). 
Both are time averaged for 20 physical seconds. 
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Fig. 9. Scaling of the Nusselt number versus the Rayleigh number for 
the range of R=35Rc to R= 140Rc. One hundred velocity eigen- 
functions ( M M =  100) and one hundred temperature eigenfunc- 
tions ( M T =  100) are employed. 

is displayed in Fig. 8 (time averaged for 20 seconds). The exact 
profile from the direct spectral simulation data is shown with 
dotted line in the same figure. The discrepancies are less than 
5% in the Euclidean norm. 

Next we would tike to discuss how well a set of empirical eigen- 
functions obtained at a reference Rayleigh number can be use(! 
at other Rayleigh numbers. In Fig. 9 are plotted time- and area- 
averaged Nusselt numbers at three different Rayleigh numbers, 
R/P~=35, R/P~::70 and R/l~=140. These data are obtained by 
solving the low dimensional system (with 100 velocity and 100 
temperature eigenfunctions) at the specific Rayleigh number for 
20 physical seconds. Usually in the Rayleigh-Benard convection, 
the following scaling rule is valid. 

Nu = a (28) 

where ct and n are constants. 

Table 1. Effects of number of eigenfunetions employed 

Nu at R=70P~ n for R=35P~-140P~ 
Direct numerical simulation 5.75 0.250 
150 eigenfunctions 5.91 0.259 
130 eigenfunctions 5.97 0.260 
100 eigenfunctions 6.05 0.263 
50 eigenfunctions 6.15 0.128 

The experimental or numerical value [-Castaing et al., 1989; 
Garon and Goldstein, 19733 of n lies between 0.28 and 1/3. Here 
we obtained n = 0.263, which is slightly smaller than the expected 
value. But a recent direct spectral simulation [Deane and Sirovich, 
1991] using coarse meshes for R<70tL has yielded n=  1/4. This 
difference in values of the index n is thought to be caused both 
by the flee-shear boundary condition adopted in the present work 
and by the rather lower Rayleigh numbers, that are in contrast 
with the non-slip boundary condition and very high Rayleigh num- 
bers used in Castaing [1989] and Garon E1973]. 

Now we change the number of eigenfunctions in the Galerkin 
procedure and investigate its effects on the performance of the 
resulting low dimension dynamic systems. If we use 50 velocity 
and 50 temperature eigenfunctions we get a much worse value 
n=0.128 even though the Nusselt number at the reference Ray- 
leigh number (70R,.) is 6.15, which is not much different from 
the value obtained with 100 velocity and 100 temperature eigen- 
functions, i.e., 6.05. This is because the set of reference empirical 
eigenfunctions, which was sufficient to resolve the boundary layer 
at the same Rayleigh number, is not fully appropriate (i.e., not 
optimal) for the resolution of the boundary layers at different 
Rayleigh numbers. The values of n for 130 velocity and 130 tem- 
perature eigenfunctions and for 150 velocity and 150 temperature 
eigenfunctions are 0.260 and 0.259, respectively. Fig. 10 plots the 
variation of n with respect to the number of empirical eigenfunc- 
lions and reveals that n has a tendency to approach 0.25 as the 
number of eigenfunctions increases. Therefore, we may conclude 
that a larger number of eigenfunctions is required to simulate 
flow field at Rayleigh numbers which are far different from the 
reference Rayleigh number. These findings are summarized in 
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Table 1. 
Another cause of discrepancies between results of the low di- 

mensional systera and those of direct spectral simulation is the 
effects of neglected small scales that might be represented by 
the truncated empirical eigenfunctions with small eigenvalues. 
These small eddies act as eddy viscosity and eddy diffusivity in 
the dynamic of large eddies. The eddy viscosity and eddy diffu- 
sivity damp the dynamics of empirical eigenfunctions and conse- 
quently bring a decrease in Nusselt number. This explains why 
both the time-averaged Nusselt number from 100 w'.locity and 
100 temperature eigenfunction system and that from [50 velocity 
and 50 temperature eigenfunctions are higher than the exact val- 
ue from the pseudospectral simulation, the Nusselt number in- 
creases as the number of empirical eigenfunctions decreases. This 
is corroborated further by the results of 130 velocity and 130 
temperature eigenfunctions and those of I50 velocity and 150 
temperature eigenfunctions as shown in Table 1. 

The observations of this section suggest that a wider range 
of parameter space can be simulated with the present low dimen- 
sional model obtained at a reference control parameter if the ef- 
fect of small scale motion neglected due to the truncation in the 
Galerkin procedure and the changes in time averaged velocity 
and temperature profiles in the boundary layer are appropriately 

considered. 

CONCLUSION 

A low dimensional model which simulates the real fluid turbu- 
lence is derived. The phenomena which this model predicts in- 
clude the time averaged flow patterns and heat transfer coefficient 
at the boundary (i.e. Nusselt number). Because this model is an 
optimal combination of empirical eigenfunctions of Karhunen-- 
Loeve decomposition, in the sense that the maximum energy of 
turbulence is captured with a given number of degree of freedom, 
the dimension of this dynamic model is less than any other model 
when compared on the same criterion of accuracy. Due to this 
optimal property, even with a small number of degree of freedom 
the present model can take care of some important aspects of 
turbulent motions that determine heat and momentum transfer 
rates, which are usually affected by large scale energy containing 
motions. On the other hand the spatial intermittency and higher 
order derivative statistics may not be easily explained by the pres- 
ent low dimensional model. The maximum degree of freedom 
used in the present model is 300, which is far less than that 
used in the pseudospectral simulation of Boussinesq equation, 
i.e., 2•  104 . If so:me loss of accuracy in prediction can be tolerated, 
we may even reduce the number of equations to much smaller 
values. 

It is also expected that the performance of the present low 
dimensional dynamic model can be improved further with appro- 
priate considerations of small scale motions that are truncated 
in the Galerkin procedure and the variation of momentum and 
energy boundary layers as the value of the control parameter 
changes. This kind of investigation is currently under progress 
and shall be presented in a subsequent paper. 

NOMENCLATURE 

a.(t) : spectral coefficient of the velocity field defined by Eq. (14) 
b.(t) : spectral coefficient of the temperature field defined by Eq. 

(15) 
H : height of the system 
K(x, x ' ) : two  point correlation function defined by Eq. (10) 
MM number of velocity eigenfunctions employed 
MT number of temperature eigenfunctions employed 
N total number of snapshots used in the Karhunen-Loeve de- 

composition 
Nu Nusselt number (-=actual heat transfer/pure conduction 

heat transfer) 
p pressure 
Pr Prandtl number (-= heat capacity • viscosity/thermal conduc- 

tivity) 
R :Rayleigh number (-=gravity constant• expansion 

coefficient • (T0-TO • H3/thermal diffusivity • kinematic vis- 
cosity) 

Re : Reynolds number (-=length • velocity • density/viscosity) 
t : time 
T : the deviation temperature 
Ttocat : the system temperature 
To : the bottom temperature 
T~ : the top temperature 
u : velocity vector 
u :x-component of the velocity vector 
v :y-component of the velocity vector 
w :z-component of the velocity vector 

Greek Letters 
r : velocity eigenfunction 
~g : temperature eigenfunction 
L : eigenvalue 

: flow domain 
~o : vorticity 

Subscript 
c : critical number 
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