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Abstract — The Karhunen-Loeve decomposition is used to obtain a low dimensional model describing the dynamics
of turbulent thermal convection in a finite box. The Karhunen-Loeve decomposition is a procedure for decomposing
a stochastic field in an optimal way such that the stochastic field can be represented with a minimum number of
degree of freedom. Numerical data for the turbulent thermal convection, generated by a pseudo-spectral method
for the case of Pr=0.72 and aspect ratio=2, are processed by means of Karhunen-Loeve decomposition to yield
a set of empirical eigenfunctions. A Galerkin procedure employing this set of empirical eigenfunctions reduces the
Boussinesq equation to a small number of ordinary differential equations. This low dimensional model obtained from
numerical data at the reference Rayleigh number of 70 times the critical Rayleigh number is found to predict turbulent
convection reasonably well over a range of Rayleigh numbers around the reference value.
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INTRODUCTION

Although the Rayleigh-Benard convection in turbulent state has
been subject to a long history of experimental work [Silvestone,
1958], its numerical simulation is rather new. It is only recent
years when large scale computer simulations have been perform-
ed for Rayleigh-Benard convection well into the chaotic or tur-
bulent regime [Grotzbach, 1983; Herring and Wyngaard, 1986;
Kessler, 1987; McLaughlin and Orszag, 1982]. In some sense one
might consider numerical simulations as a new experimental tool,
but one in which one has much more control over the experimen-
tal conditions than in the laboratory experiment, and one in which
more detailed results may be obtained than in the laboratory.
Also, in numerical simulation one can obtain information about
quantities that are difficult or impossible to measure in the labo-
ratory. In this approach, we resolve numerically all small scale
motions of turbulence, which is inherently three-dimensional and
unsteady, without introducing any turbulence models such as k-
epsilon models, etc. This approach, called direct numerical simu-
lation, demands tremendous amount of computer time and com-
puter memory since we need a very large number of grids to
resolve all small scale motions, and as a result produces a vast
amount of numerical data or informations. We encounter the same
situation in laboratory experiments if all details of turbulence are
measured. Therefore, the analysis and the assessment of huge
data sets are nowadays one of the central problems confronting
turbulence research. The number of scales of motion activated
in turbulence has a close relationship with the degree of freedom
or the dimension of the underlying turbulence dynamics. For a
clear understanding as well as practical applicability of the dynam-
ic models of turbulence, it is essential for these dynamic models
to be low dimensional.

In many physical systems described by nonlinear partial differ-
ential equations including the turbulent Rayleigh-Benard convec-
tion under consideration in the present paper, the representation-
al space is very large or infinite. As an example, we recall Landau’
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s estimate on the degrees of freedom present in a given flow.
Using the Kolmogorov scale as an estimate of the smallest rele-
vant scale he arrived at (Re/Re)** degree of freedom, where Re,
is the critical Reynolds number. By making use of Stoke’s eigen-
functions, Constantine et al. [1985] obtained a similar estimate
with the use of a rigorous mathematical analysis. But based on
many previous numerical and experimental evidence [Brown and
Roshko, 1974] we conjecture that a description involving a much
smaller space is possible. One clear and systematic way of demon-
strating this conjecture is to employ the Karhunen-Loeve decom-
position (K-L decomposition), a brief description of which is given
in Sec. 2.

The Karhunen-Loeve decomposition is first suggested by Lum-
ley [1967] and Sirovich [1987a, 1987b] as a rational procedure
for the extraction of characteristic structures of turbulent flow
fields. Those characteristic structures are called empirical eigen-
functions. As originally presented by Lumley, the method be-
comes impractical unless all but one of the directions have period-
ic boundary conditions. Due to this limitation, most of applications
of the Karhunen-Loeve decomposition to turbulence have been
confined to systems with periodic conditions. Perhaps one dis-
tinguished exception is the turbulent Rayleigh-Benard in a confin-
ed domain considered by Park and Sirovich [1990] and Sirovich
and Park [1990] where no periodicity of boundary conditions
is imposed. For a confined domain, the empirical eigenfunctions
appear as complicated functions not expressible analytically, which
are in contrast with those of infinite domains with periodic bound-
aries whose empirical eigenfunctions are sinusoidal in the pe-
riodic directions. In this fully confined turbulent R-B convection
problem, the difficulty in the original form of the Karhunen-Loeve
decomposition has been overcome by using the method of snap-
shot or Schmidt-Hilbert technique. In this way, the applicability
of the K-L decomposition has been extended to a more practical
situation.

When the K-L decomposition is applied to the turbulent Ray-
leigh-Benard convection in a ¢ nfined domain, as explained in
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Fig. 1. Flow geometry.

our previous work [Park and Sirovich, 1990; Sirovich and Park,
1990], the low dimensionality of the underlying dynamics of tur-
bulence is clearly exhibited by the rapid convergence of the K-
L procedure, i.e., most of the turbulence energy is captured with
only a small number of empirical eigenfunctions. The empirical
eigenfunctions generated in the Karhunen-Loeve procedure can
be used very efficiently in a Galerkin procedure to generate a
low dimensional dynamic system [Aubry et al, 1988; Sirovich,
1987b].

In the present work we use the empirical eigenfunctions of
the Rayleigh-Benard convection in a finite domain to approximate
the dynamic behavior of the corresponding system. As is demorn-
strated in the previous work on the Ginzburg-Landau equation
[Sirovich and Rodriguez, 1987], the eigenfunctions generated for
a fixed control parameter can be used to describe the dynamics
of the system at other parameter values as long as these values
are not much larger than the original one. Usually in turbulent
flow, as the Reynolds number (Rayleigh number R in the case
of thermal convection)} increases, more and more small scale mo-
tions (eddies) appear. But the large scale motions, for example
coherent structures, take care of most of the turbulent energy
and have a dominant role in de‘ermining the transfer rates of
momentum, heat and mass, that may be one of the most important
aspects of turbulence in engineering applications. As will be dem-
onstrated in the sequel, the Karhunen-Loeve decomposition yields
empirical eigenfunctions in the order of the size of the scales
of flow and suggests a very convenient tool of obtaining a low
dimensional model for turbulent dynamics. It shall be demonstra-
ted that this low dimensional model can be used to predict pheno-
mena of large scale motions of turbulence, such as Nusselt num-
ber, over a range of Rayleigh numbers.

GOVERNING EQUATIONS AND THE KARHUNEN-
LOEVE DECOMPOSITION

The physical system of our specific interest in the present work
is the Rayleigh-Benard convection in a finite domain as sketched
in Fig. 1. The Boussinesq equation and boundary conditions for
this investigation are to be found in Sirovich and Park [1990]
and are repeated here in the following form.

V-u=0 $h)

2
%ﬁu/\m:—V<p+u§)+R Pr T e,+Pr Vu @)
%T{+u-VT:W+V2T 3

where @ is vorticity and (u, v, w) the components of the velocity
vector u, R the Rayleigh number, Pr the Prandtl number, and
T is the deviation temperature given by the difference between
the system temperature T, and the basic conduction profile,
To+(T,—Tyz/H, thus Tpw=T+To+(T,—Tyz/H. Here, T; is the
bottom temperature, T, is the top temperature and H is the sys-
tem height. The relevant boundary conditions are as follows.
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These boundary conditions specify slip momentum boundary con-
ditions at all boundaries, adiabatic sidewalls and specified temper-
atures at the upper and lower boundaries. These boundary condi-
tions may correspond to situations similar to free shear layers,
which 1s more difficult to be realized experimentally than the
usual non-slip boundaries. But this shear-free boundary conditions
greatly reduce the computation cost because we can employ Fou-
rier expansion instead of Chebyshev expansion in the spectral
simulation. The aspect ratio of 2 includes the most dangerous
mode from linear stability theory [Sirovich and Park, 1990]. The
Rayleigh number is 70 times the critical value and Pr equals 0.72.
The critical Rayleigh number for this case is 657.5. The Pr value
adopted here is that of air which is one of the most common
fluids available. In Rayleigh-Benard convection, the Prandtl num-
ber has non-negligible effect on instability or transition, where
the Rayleigh number is around the critical value. But when the
Rayleigh number exceeds far more than the cnitical value, as is
in the present work, the effect of Prandtl number on the Rayleigh-
Benard convection, especially on Nusselt number, is negligible.
This is well demonstrated by the classical experiment of Silveston
[1958], who used various fluids having widely different values
of Pr and measured Nusselt number as a function of Rayleigh
number, His result, that is also cited as Fig. 13 in Chandrasekhar
[1961], reveals that the Nusselt number does not depend appre-
ciably on Prandtl number in turbulent thermal convection. But
it may be interesting to investigate the effect of Pr on turbulent
thermal convection in detail in the future.

The numerical procedure is as follows. We generate snapshots
of the flow field by solving Eqs. (1)-(6) with a pseudospectral
method. Algebraic products are calculated i the physical space
and derivatives in the Fourier space. and the fast Fourier trans-
form allows rapid passage between the spaces. This follows stand-
ard practice [Canuto et al., 1988]. A time marching scheme based
on a leap-frog for nonlinear terms and an exact integration for
the linear part is employed, which is stabilized by a periodic use
of a second order Runge-Kutta scheme. The time step of integra-
tion is taken to be less than the Kolmogorov time scale (At=
0.001) and the number of grid points is large enough to resolve
the Kolmogorov microscale (17° grids). The velocity and temper-
ature fields are dumped at every 600 time steps to generate 200
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Fig. 2a. The variation of velocity energy captured versus the number
of velocity empirical eigenfunctions.

snapshots which are used as a data set for the subsequent Karhu-
nen-Loeve decomposition. In Park and Sirovich [1990] we report-
ed the detail of numerical method and the empirical eigenfunc-
tions obtained by the snapshot method. Here a slightly different
set of eigenfunctions is obtained, which is more convenient as
a set of basis functions for the Galerkin approximation. The dif-
ference is that now we separate the velocity and temperature
fields when constructing the kernel of the Karhunen-Loeve inte-
gral equation.
We take the state variables to be

ll:(Vl, Vo, Vg) (7)

where vy, vo and v, are the velocity components in the Cartesian
coordinates, and imagine an ensemble of states (snapshots) of
the flow on the attractor, denoted by

u” =ulx, t.) (8)

and sampled at uncorrelated times t,. The eigenfunction of the
following integral equation with the largest eigenvalue A has the
interpretation of being the most likely state of the flow field.

f K(x, x) &(x)dx = A9(x) ©
where
N
[K];=Kx, X')=<v,(X)V,-(X’)>E% Z voxv(x') (10
n=1

is the two point correlation function. The eigenfunction ¢ with
the next largest eigenvalue is the next likely state and so forth.
This set of empirical eigenfunctions {9} satisfy orthogonality,

@, 09= [ 80, dx=0, j=k an
and are solenoidal, V-¢,=0. Similarly the integral equation yield-
ing empirical eigenfunctions for the temperature field is given

by

fK(x, X y(x)dx’ = Ay(x) (12)

where
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Fig. 2b. The variations of temperature energy captured versus the num-
ber of temperature empirical eigenfunctions.
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Fig. 3a,b. The cross sectional views of the dominant velocity eigen-
function, Inserts indicate planes in which flow lines are
shown.

N
Kx, xv):<T(xyr<x')>z§ £ T(0T"(x) (13)
n=1

and the set {\u,} is orthogonal. Figs. 2a and 2b plot the variation
of energy capture versus the number of velocity and temperature
eigenfunctions. Thus, with 50 eigenfunctions 95% of flow energy
and 97% of temperature energy are captured. Figs. 3 and 4 show
the dominant velocity and temperature eigenfunctions (i.e., eigen-
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Fig. 5a, b. The 50th velocity eigenfunction; inserts indicate planes in
which flow lines are shown.

functions with large eigenvalues). They depict large scale, ener-
getic motions of turbulent flow field. These dominant eigenfunc-
tions are characterized by relatively well-organized large scale
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Fig. 6. Energy spectrum of the first (solid line —), the 10th (dotted
line ::-), and the 50th (dashed line ---) velocity empirical eigen-
functions,

motions. By contrast eigenfunctions of high index as typified in
Fig. 5, reveal irregular chaotic motion of much smaller length
scale. This shows that through the K-L decomposition, large
scale motions are depicted by dominant eigenfunctions and small
scale motions which correspond to high frequency part of flow
field are captured by eigenfunctions with smaller eigenvalues. Fig.
6 shows the energy spectra of the first, the 10th and the 50th
velocity eigenfunction respectively. These energy spectra show
that the empirical eigenfunctions are not monochromatic in spec-
tral space but have broad band structures with maxima appearing
at certain frequencies which represent the dominant scales for
the corresponding eigenfunctions. The dominant eigenfunctions,
such as the first one, have peaks at spatial frequencies which
characterize their specific shapes. As the eigenvalue decreases
the spatial frequency which yields maximumn energy spectrum
increases and the spectrum becomes more broad banded (in the
sense that the standard deviation becomes larger). This is an indi-
cation of the existence of many small scale motions of different
sizes.

The above trend suggests that the eigenfunctions with small
eigenvalues act as eddy viscosity in the dynamics of large scale
motion depicted by eigenfunctions with large eigenvalues. When
we employ these empirical eigenfunctions as basis functions for
the Galerkin procedure, as described in the next section, only
a finite number of them are used and the remaining empirical
eigenfunctions of high index (with smaller eigenvalues) are trun-
cated. The resulting low dimensional dynamic system from this
Galerkin procedure may be deficient in effective viscosity, espe-
cially when the control parameters, like the Rayleigh number,
exceed the value at which the empirical eigenfunctions have been
obtained. This fact will be explained further in the subsequent
sections.

THE GALERKIN PROCEDURE

Next we project the Boussinesq equation into a finite dimen-
sional space by means of a Galerkin procedure. Exploiting the
fact that the Karhunen-Loeve decomposition produces a set of
eigenfunctions in the order of their importance in describing the
chaotic turbulent flow field, we first write,

Korean J. Ch. E.(Vol. 13, No. 2)
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u MM

u=|v|= T a,(t)d.(x) (14)
w n=1
MT

T= Z b.{thy.(x) (15)
n=1

where MM is the number of velocity eigenfunctions and MT that
of temperature eigenfunctions employed in the Galerkin proce-
dure. It may be convenient to take MM and MT to be the same
number, but it does not always have to be so. As before {0, is
the set of velocity eigenfunctions and {\u,,} the set of temperature
eigenfunctions presented in the order of magnitude of eigenval-
ues. These expansions (14) and (15) satisfy the boundary condi-
tions (4)-(6) automatically since each of the empirical eigenfunc-
tions ¢, and v, satisfies all the boundary conditions (4)-(6).

On substituting these Egs. (14) and (15) into the set of Boussi-
nesq Eqgs. (1)-(3) and requiring the residuals be orthogonal to
each of the basis functions used in the expansion, we find the
following coupled set of ordinary differential equations in eigen-
function space.

da(k) MM MM MM
Sk . X X a%"™Qu,+Pr T aPA
=1 m=1 =1
MT
+RPr X b°C,,, k=1,-- MM (16)
=1
db(k‘/ MM MT MT
k =- 3 X a“’b"’”Rumw" x melz.I
dt =1 m=1 =1
MM
+ X aD,y, k=1, MT an
=1
where
SkEJ-nd)k'(bkdX (18)
PkEJ'an\dex 19
Qun=[ e+ (T 70 dx (20)
Raun= [ Wil Guldx @
A= o Vo 22)
Be= j _uVudx (23)
C,}JEJ’Q(D;;WWIdX (24)
DMEJ'H\U},¢deX (25)

In the above equations, ¢* is the z-component of the velocity
eigenfunction .

The resulting sets of ordinary differential Eqs. (16) and (17)
constitute the low dimensional model for turbulent thermal con-
vection in the finite domain considered in the present work. This
low dimensional model may be thought to be based on the follow-
ing picture of turbulence. Namely, we imagine a chaotic and com-
plicated turbulent flow field is composed of empirical eigenfunc-
tions.

ux, D= T at6,(x) (26)
n=1

where the time dependent coefficients a,(t)’s are given by
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from the low dimensional dynamic system.
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The interpretation of Egs. (26) and (27) is that the “unsteady”
complicated turbulent flow field is modeled to be composed of
sum of “steady” deterministic empirical eigenfunctions, and the
unsteadiness of turbulence comes from the time dependence of
the coefficients a,’s that premultiply each eigenfunction. The re-
sulting low dimensional Eqs. (16) and (17) are solved by a fourth-
order Runge-Kutta method.

RESULTS AND DISCUSSION

In this section we shall investigate how well the low dimension-
al system of the present work reproduces the results of the origi-
nal dynamics, i.e., the Boussinesq set of Eqgs. (1)-(3). For this pur-
pose we set, as a reference value, MM =100 and MT =100, where
MM is the number of velocity eigenfunctions and MT that of
temperature eigenfunctions respectively. This set of 200 ordinary
differential equations is integrated for 20 physical seconds to ge-
nerate a time series of area-averaged Nusselt number and aver-
aged profiles for (T), where (-}, means horizontal area average.
Since the system temperature is given as Tpm=T+ T+ (T;— To)
z/H, the Nusselt number is defined by Nu=1—(T/9Z)/(To— T\
/H). The integration time of 20 physical seconds is sufficiently
long to get stationary turbulence statistics. In the following, the
Prandt! number is fixed to be 0.72 for all results. Fig. 7 shows
the time series of the unsteady area-averaged Nusselt number,
ie. {Nu),, for R=70Rc when the reference Rayleigh number,
on which the original empirical eigenfunctions are based, is the
same 70Rc. Here R¢ is the critical Rayleigh number based on
a linear stability analysis [Sirovich and Park, 1990]. The time
averaged Nusselt number from this low dimensional model is
6.05 which is 5% higher than the exact value of 5.75 [Park and
Sirovich, 1990]. Considering the fact that 98% of the velocity en-
ergy and 99% of the temperature energy are captured with 100
empirical eigenfunctions (cf. Fig. 2a, b) and the Nusselt number
is determined by a temperature gradient which is not so easily
captured as the temperature itself through the empirical eigen-
functions, this accuracy of prediction is more than what we can
expect. The horizontal area averaged temperature profile {T)4
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is displayed in Fig. 8 (time averaged for 20 seconds). The exact
profile from the direct spectral simulation data is shown with
dotted line in the same figure. The discrepancies are less than
5% in the Euclidean norm.

Next we would like to discuss how well a set of empirical eigen-
functions obtained at a reference Rayleigh number can be used
at other Rayleigh numbers. In Fig. 9 are plotted time- and area-
averaged Nusselt numbers at three different Rayleigh numbers,
R/R.=35, R/R.=70 and R/R.=140. These data are obtained by
solving the low dimensional system (with 100 velocity and 100
temperature eigenfunctions) at the specific Rayleigh number for
20 physical seconds. Usually in the Rayleigh-Benard convection,
the following scaling rule is valid.

Nu=q %)" 28)

where ¢ and n are constants.
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Table 1. Effects of number of eigenfunctions employed

Nu at R=70R, n for R=35R.-140R,

Direct numerical simulation 5.75 0.250
150 eigenfunctions 591 0.259
130 eigenfunctions 597 0.260
100 eigenfunctions 6.05 0.263
50 eigenfunctions 6.15 0.128

The experimental or numerical value [Castaing et al, 1989;
Garon and Goldstein, 1973] of n lies between 0.28 and 1/3. Here
we obtained n=0.263, which is slightly smaller than the expected
value. But a recent direct spectral simulation [Deane and Sirovich,
19917 using coarse meshes for R<70R, has yielded n=1/4. This
difference in values of the index n is thought to be caused both
by the free-shear boundary condition adopted in the present work
and by the rather lower Rayleigh numbers, that are in contrast
with the non-slip boundary condition and very high Rayleigh num-
bers used in Castaing [1989] and Garon [1973].

Now we change the number of eigenfunctions in the Galerkin
procedure and investigate its effects on the performance of the
resulting low dimension dynamic systems. If we use 50 velocity
and 50 temperature eigenfunctions we get a much worse value
n=0.128 even though the Nusselt number at the reference Ray-
leigh number (70R)) is 6.15, which is not much different from
the value obtained with 100 velocity and 100 temperature eigen-
functions, i.e., 6.05. This is because the set of reference empirical
eigenfunctions, which was sufficient to resolve the boundary layer
at the same Rayleigh number, is not fully appropriate (i.e., not
optimal) for the resolution of the boundary layers at different
Rayleigh numbers. The values of n for 130 velocity and 130 tem-
perature eigenfunctions and for 150 velocity and 150 temperature
eigenfunctions are 0.260 and 0.259, respectively. Fig. 10 plots the
variation of n with respect to the number of empirical eigenfunc-
tions and reveals that n has a tendency to approach 0.25 as the
number of eigenfunctions increases. Therefore, we may conclude
that a larger number of eigenfunctions is required to simulate
flow field at Rayleigh numbers which are far different from the
reference Rayleigh number. These findings are summarized in

Korean J. Ch. E.(Vol. 13, No. 2)
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Table 1.

Another cause of discrepancies between results of the low di-
mensional systern and those of direct spectral simulation is the
effects of neglected small scales that might be represented by
the truncated empirical eigenfunctions with small eigenvalues.
These small eddies act as eddy viscosity and eddy diffusivity in
the dynamic of large eddies. The eddy viscosity and eddy diffu-
sivity damp the dynamics of empirical eigenfunctions and conse-
quently bring a decrease in Nusselt number. This explains why
both the time-averaged Nusselt number from 100 velocity and
100 temperature eigenfunction system and that from 50 velocity
and 50 temperature eigenfunctions are higher than the exact val-
ue from the pseudospectral simulation, the Nusselt number in-
creases as the number of empirical eigenfunctions decreases. This
is corroborated further by the results of 130 velocity and 130
temperature eigenfunctions and those of 150 velocity and 150
temperature eigenfunctions as shown in Table 1.

The observations of this section suggest that a wider range
of parameter space can be simulated with the present low dimen-
sional model obtained at a reference control parameter if the ef-
fect of small scale motion neglected due to the truncation in the
Galerkin procedure and the changes in time averaged velocity
and temperature profiles in the boundary layer are appropriately
considered.

CONCLUSION

A low dimensional model which simulates the real fluid turbu-
lence is derived. The phenomena which this model predicts in-
clude the time averaged flow patterns and heat transfer coefficient
at the boundary (i.e. Nusselt number). Because this model is an
optimal combination of empirical eigenfunctions of Karhunen-
Loeve decomposition, in the sense that the maximum energy of
turbulence is captured with a given number of degree of freedom,
the dimension of this dynamic model is less than any other model
when compared on the same criterion of accuracy. Due to this
optimal property, even with a small number of degree of freedom
the present model can take care of some important aspects of
turbulent motions that determine heat and momentum transfer
rates, which are usually affected by large scale energy containing
motions. On the other hand the spatial intermittency and higher
order derivative statistics may not be easily explained by the pres-
ent low dimensional model. The maximum degree of freedom
used in the present model is 300, which is far less than that
used in the pseudospectral simulation of Boussinesg equation,
Le., 2X10% If some loss of accuracy in prediction can be tolerated,
we may even reduce the number of equations to much smaller
values.

It is also expected that the performance of the present low
dimensional dynamic model can be improved further with appro-
priate considerations of small scale motions that are truncated
in the Galerkin procedure and the variation of momentum and
energy boundary layers as the value of the control parameter
changes. This kind of investigation is currently under progress
and shall be presented in a subsequent paper.

NOMENCLATURE

a,(t) : spectral coefficient of the velocity field defined by Eq. (14)
ba(t) : spectral coefficient of the temperature field defined by Eq.
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(15}

H :height of the system

K(x, x') : two point correlation function defined by Eq. (10)

MM : number of velocity eigenfunctions employed

MT : number of temperature eigenfunctions employed

N  :total number of snapshots used in the Karhunen-Loeve de-
composition

Nu : Nusselt number (=actual heat transfer/pure conduction
heat transfer)

p  :pressure
Pr : Prandt] number (=heat capacity X viscosity/thermal conduc-
tivity)

R :Rayleigh number (=gravity constantXthermal expansion
coefficient X (T,-Ty) X H¥/thermal diffusivity X kinematic vis-
cosity)

Re :Reynolds number (=lengthXvelocity X density/viscosity)

t : time

T  :the deviation temperature

T :the system temperature

To :the bottom temperature

T, :the top temperature

n :velocity vector

u :x-component of the velocity vector

v : y-component of the velocity vector

w  :z-component of the velocity vector

Greek Letters

: velocity eigenfunction

: temperature eigenfunction
: eigenvalue

: flow domain

: vorticity

e Hh>€ ©

Subscript
c : critical number
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